complex conjugate zeros

complex conjugate zeros
Математика: комплексно сопряжённые нули

Универсальный англо-русский словарь. . 2011.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "complex conjugate zeros" в других словарях:

  • Complex number — A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the square root of –1. A complex… …   Wikipedia

  • Polynomial function theorems for zeros — are a set of theorems aiming to find (or determine the nature) of the complex zeros of a polynomial function.Found in most precalculus textbooks, these theorems include: * Remainder theorem * Factor theorem * Descartes rule of signs * Rational… …   Wikipedia

  • Durand–Kerner method — In numerical analysis, the Durand–Kerner method established 1960–66 and named after E. Durand and Immo Kerner, also called the method of Weierstrass, established 1859–91 and named after Karl Weierstrass, is a root finding algorithm for… …   Wikipedia

  • Spherical harmonics — In mathematics, the spherical harmonics are the angular portion of an orthogonal set of solutions to Laplace s equation represented in a system of spherical coordinates. Spherical harmonics are important in many theoretical and practical… …   Wikipedia

  • Blaschke product — In mathematics, the Blaschke product in complex analysis is an analytic function designed to have zeros at a (finite or infinite) sequence of prescribed complex numbers: a 0, a 1, ...inside the unit disc. If the sequence is finite then the… …   Wikipedia

  • Analytic function — This article is about both real and complex analytic functions. The article holomorphic function is solely about analytic functions in complex analysis. An analytic signal is a signal with no negative frequency components. In mathematics, an… …   Wikipedia

  • Root of unity — The 5th roots of unity in the complex plane In mathematics, a root of unity, or de Moivre number, is any complex number that equals 1 when raised to some integer power n. Roots of unity are used in many branches of mathematics, and are especially …   Wikipedia

  • Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the …   Wikipedia

  • Wilkinson's polynomial — In numerical analysis, Wilkinson s polynomial is a specific polynomial which was used by James H. Wilkinson in 1963 to illustrate a difficulty when finding the root of a polynomial: the location of the roots can be very sensitive to perturbations …   Wikipedia

  • Eigenvalue algorithm — In linear algebra, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors. Contents 1 Characteristic polynomial 2 Power… …   Wikipedia

  • Cubic function — This article is about cubic equations in one variable. For cubic equations in two variables, see elliptic curve. Graph of a cubic function with 3 real roots (where the curve crosses the horizontal axis where y = 0). It has 2 critical points. Here …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»